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Embedding of multidimensional time-dependent observations
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A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of
dynamic nonlinear processes. The Takens embedding theory is combined with independent component analy-
sis to transform the embedding into a vector space of linearly independent vectors~phase variables!. The
method is successfully tested against prediction of the unembedded state vector in two case studies of simu-
lated chaotic processes.
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Parametrization of nonlinear dynamic systems by emb
ding of observations in phase space is central to the ana
of nonlinear time series, and the treatment of on
dimensional systems in this way is well established in n
linear system identification@1,2#. However, parametrization
of dynamic systems by embedding of multidimensional o
servations has not been sufficiently formalized, despite
practical importance of these types of systems. One ca
always predict the time evolution of a system state from
single observed variable@3#. For example, the Lorenz syste
@4# has three state variablesx, y, andz, but ẋ5 f (x,y), while
ż5 f (x,y,z); thus one cannot properly predictz only from x
or even~x,y! observations.

Cao, Mees, and Judd@3# have proposed the embedding
all components of the multidimensional observations by
ing an optimal Takens embedding for each component,
tained by minimizing the average prediction error of a ne
est neighbor, locally constant predictor. Unfortunately th
did not indicate how to optimize the embedding lag, which
crucial in the reconstruction of a representative attractor
realistic systems, especially if noise is present in the ob
vations. Individual embedding of each observation in
phase space could lead to significant statistical depend
between some of the phase variables, resulting in an attra
that is not optimally reconstructed from the observations

In this article we therefore propose a method of emb
ding multidimensional observations that avoids both lin
approximations in finding embedding dimensions and pot
tially suboptimal embedding lags. With this approach, ea
observation component is treated as a one-dimensional
series and embedded individually to generate a subsp
The concatenation of these subspaces into a combined p
space is consequently found to form a first approximation
the attractor inRL5Rm1øRm2ø¯øRmM. Finally, the em-
bedding variables are linearly separated to form proper ph
variables. This results in a reconstructed dynamic attra
defined by a set of phase variables, based on the observ
space.

More specifically, each component of theM-dimen-
sional observation ~multidimensional time series! Y
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5@Y1 ,Y2 ,Y3 ,...,YN#T, is embedded using Taken
embedding as the matrix X, where X i j
5@yi j ,yi 2kj , j ,...,yi 2mj (kj 21),j #,i 5bj, . . . ,N; j 51, . . . ,M ,

andbj5max@kj (mj21)#2kj (mj21)11.
The embedding lag is determined by the average mu

information~AMI ! algorithm of Frazer and Swinney@5# and
the embedding dimension by the false nearest neigh
~FNN! algorithm @6#. Next, we find the optimal linear sepa
ration of non-Gaussian phase variables inX by optimal pro-
jection of X of the observations, as follows:

S5WX , ~1!

whereS is the optimal projection of the original embeddin
and W the transformation~separating! matrix. The dimen-
sion ofS may be lower than that ofX. Thus one may achieve
optimal projection, reduction of dimensionality, as well
linear independence of the phase variables.

Applying Hyvärinen’s method@7# to find W, one has to
maximize the negentropyJG of X, which is equivalent to
minimizing the mutual information among components ofX,
under the constraint of linear decorrelation of the comp
nents, i.e., maximize

(
i 51

M

JG~wi ! with respect towi ~2!

under the constraint,

E$wk
Twj

T%5d jk , ~3!

where

JG~w!5@E$G~wTx!%2E$G~n!%#2 ~4!

with G(•) some sufficiently smooth, even, so-called contr
function that estimates the probability density function of
independent component andn a standardized Gaussian var
able. Each vectorwi is a row of matrixW.

We compared models based on embedded observa
with similar models when the observations are not emb
ded. Two case studies were considered, namely, a cha
autocatalytic process and the familiar Lorenz system. W
the observations were not embedded, a subset of the
©2001 The American Physical Society01-1
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served states was used directly to predict another subs
the observed states from the same system. In both test c
it is apparent from inspection of the state equations of
process@Eqs.~5! and~6! below# that theZ state is dependen
on all three state variables~X,Y,Z!, so that successful mode
ing of Z from X andY would constitute a proper test of th
proposed embedding strategy.

The autocatalytic process previously considered by Ly
@8# can be expressed as a state space system by the follo
set of differential equations:

dX

dt
512X2aXZ2,

dY

dt
512Y2bYZ2,

dZ

dt
512~11c!Z1daXZ21ebYZ2, ~5!

whereX, Y, andZ are dimensionless concentrations anda, b,
c, d, ande, dimensionless input concentrations. The proc
is chaotic with a well-defined attractor for specific ranges
two process control parameters,d and e. For the settingsa
518 000,b5400, c580, d51.5, e54.2, and initial condi-
tions@0,0,0#T, the authors solved the set of equations usin
fifth order Runge-Kutta numerical method over 100 sim
lated seconds. This gave approximately 10 000 points wh
were resampled with a constant sampling period of 0.0
The evolution of the three statesX,Y,Zwas observed over th
whole period of the simulation to form a three-dimension
set of observations~time series! of the system.

The first step of the proposed multidimensional emb
ding strategy was to embed the individual observation co
ponents. For each observation component, the lagk57 from
AMI calculations~Fig. 1!, and the embedding dimensionm
53 ~Fig. 2! from FNN calculations~9-embedding space wa

FIG. 1. Calculation of optimal embedding lag, shown here fox
component of autocatalytic process. Heuristically, optimal lag is
at first minimum.
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obtained by columnwise concatenation of theR3 subspaces
that resulted from the individual embedding of each obs
vation component.

Hyvärinen’s algorithm@7# with a contrast function of the
form G(s)5(1/a)ln cosh(as), with a some trivial constant,
was used to project the embedding space to a proper
space. For this purpose, we used theMATLAB compatible
softwareFASTICA @9#. The optimal contrast function was se
lected after qualitatively investigating the distribution of th
observation components by plotting histograms of the co
ponents superimposed on a Gaussian distribution~Fig. 3!.
Guidelines for the selection of a contrast function accord
to the distribution of the data are available in theFASTICA

software help files, as well as in@7#.
A multiple-layer perceptron neural network with a sing

hidden layer consisting of 32 hyperbolic tangent nodes an
single-node linear output layer was fitted to the state spac
predict Z from the selected observations. For this purpo
we used theMATLAB Neural Network Toolbox V2.0. The
network was trained with the Levenberg-Marquardt alg
rithm on the first 7000 observations, tested on observati
7001 to 8000, and validated against observations 8001

et

FIG. 2. Calculation of optimal embedding dimension, show
here for thex component of the autocatalytic process.

FIG. 3. Choosing the contrast function: Histograms of autoca
lytic components superimposed on Gaussian distribution.
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9000. The number of hidden nodes was determined by c
paring the model error on the test set against increasing
work size. A minimum sum squared error was reached for
hidden nodes. For comparison of embedding strategies
neural network model was also fitted directly to the sa
observations as were used for embedding, to predict thZ
state.

The same approach was followed with the Lorenz syst
which is also a chaotic system and is described by the
lowing set of differential equations:

ẋ5s~y2x!,

ẏ5r2y2xz,

ż52bz1xy. ~6!

These equations were solved for the standard values os
510, r528, andb5 8

3 by using fifth order Runge-Kutta
numerical integration over 50 simulated seconds. All th
states were resampled at a constant 0.05 s sampling pe

As in the previous case, the first step was to embed
observedX and Y states. For each observed state, the lak
53 was found from AMI calculations, while the embeddin
dimensionm53 was found from FNN calculations, resultin
in anR6 state space. The same multilayer perceptron ne
network described above was fitted to the state space to
dict the observedZ state. For comparison of embeddin
strategies, the same model was fitted directly to the samX
andY observations used for embedding to predict theZ state.
Optimal projection of the initial embedding was bas
on the use of a Gaussian contrast function of the fo
G(s)52(1/a)exp(2as2/2).

The model based on embedding gave significantly be
prediction of theZ state than the model fitted directly to th
X and Y observations. For one-step ahead prediction of
autocatalytic system, the multilayer perceptron could pre

FIG. 4. AutocatalyticZ state predicted from a multichannel em
bedding ofX andY states~3 marker!, as well as predicted directly
from X and Y states~s marker! with neural network. ObservedZ
state is represented by the line.
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the data with an accuracy characterized by a multiple co
ficient of determinationR250.995 when the proposed em
bedding method was used, as opposed to anR2 value of
0.928 when embedding was not used. Likewise, embedd
of the Lorenz system enabled one-step ahead prediction
the multilayer perceptron characterized by anR2 value of
0.991, as opposed toR250.880 when embedding was no
used. These results are shown in Figs. 4 and 5. Note,
example, in Fig. 5 that in the case of the Lorenz system
prediction ofZ in the region of crossover between the win
of the Lorenz attractor was markedly better using the mu
dimensional embedding method. This indicates that the p
posed embedding technique can be particularly useful
inferring system states where operational measuremen
these states is not feasible.

In conclusion we shall discuss the general applicability
our proposed system parametrization method, based on
embedding of multidimensional observations. The propo
method clearly works well with systems defined by ordina
differential equations, for which we can generate noisel
data. A valid question concerns the generalization of the
rametrization method to cases involving noisy observatio
A particular difficulty can be expected with the calculation
the embedding lag by the average mutual information sta
tic, which is susceptible to noise.

In this case the problem can be surmounted by embed
each observation component individually, with a default l
of k51 in a phase space of arbitrary large dimension. Af
concatenation of the subspaces, the combined phase spa
reduced by projection onto the significant eigenvectors of
phase space covariance matrix@10#. Selection of the numbe
of eigenvectors onto which to project is based on the v
ance collectively captured by the set of eigenvectors~at least
95% is recommended!. Thereafter, optimal linear separatio
is obtained, as in this article, by applying Hyva¨rinen’s
method to the reduced phase space.

FIG. 5. LorenzZ state predicted from a multidimensional em
bedding ofX andY states~3 marker!, as well as predicted directly
from X and Y states~s marker! with neural network. ObservedZ
state is represented by the line.
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