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Embedding of multidimensional time-dependent observations
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A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of
dynamic nonlinear processes. The Takens embedding theory is combined with independent component analy-
sis to transform the embedding into a vector space of linearly independent vautaise variablgs The
method is successfully tested against prediction of the unembedded state vector in two case studies of simu-
lated chaotic processes.
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Parametrization of nonlinear dynamic systems by embed=[Y,Y,,Y3,....,Y5]", is embedded using Takens
ding of observations in phase space is central to the analysembedding as the  matrix X, where X;
of nonlinear time series, and the treatment of one-=[y; ik j ,...,yi_mj(kj_l),j],i =bj, ....N;jj=1,... M,
dimensional systems in this way is well established in nongnd b;=max k;(m;—1)]—k;(m;—1)+1.
linear system identificatiofl,2]. However, parametrization The embedding lag is determined by the average mutual
of dynamic systems by embedding of multidimensional ob-information(AMI) algorithm of Frazer and Swinnd¥%] and
servations has not been sufficiently formalized, despite théhe embedding dimension by the false nearest neighbor
practical importance of these types of systems. One canndENN) algorithm[6]. Next, we find the optimal linear sepa-
always predict the time evolution of a system state from aation of non-Gaussian phase variablexify optimal pro-
single observed variab[8]. For example, the Lorenz system jection of X of the observations, as follows:
[4] has three state variablgsy, andz, butx=f(x,y), while
z=1(x,y,2); thus one cannot properly predizonly from x S=WX, @

or even(x,y) observations. . . L - .
. whereS is the optimal projection of the original embedding
Cao, Mees, and Judd] have proposed the embedding of and W the transformatior(separating matrix. The dimen-

ﬁ]” Cgr:ngogrir:ISTcgktgﬁsrgﬂtg? dﬁss'?gfgggﬁegﬁ:m::e% l2)?3'§ion of S may be lower than that of. Thus one may achieve
ta?ned bpminimizin the avera eg rediction errorpof a n’ear-Optimal projection, reduction of dimensionality, as well as
y g 9¢€ p linear independence of the phase variables.

est neighbor, locally constant predictor. Unfortunately they ApDIVi e X
. S S . S ing Hyvainen’s method 7] to find W, one has to
did not indicate how to optimize the embedding lag, which 'smaxipngi)z/e %heynegentropye of?( ]which is equivalent to

cruqla! in the reconstruc.tlon .Of a_rep_resentatlve' attractor OrPninimizing the mutual information among components<of
realistic systems, especially if noise is present in the obser-

: L . : -~ ~under the constraint of linear decorrelation of the compo-
vations. Individual embedding of each observation into : I
9 o nents, i.e., maximize
phase space could lead to significant statistical dependence
between some of the phase variables, resulting in an attractor M
that is not optimally reconstructed from the observations. > Je(w;)  with respect tow; (2
In this article we therefore propose a method of embed- i=1
ding multidimensional observations that avoids both Iinearunder the constraint
approximations in finding embedding dimensions and poten- '
tially suboptimal embedding lags. With this approach, each TaTl_ s
: . : . . E{wwj } = dj, ()
observation component is treated as a one-dimensional time
series and embedded individually to generate a subspacghere
The concatenation of these subspaces into a combined phase
space is consequently found to form a first approximation of Jo(W)=[E{G(W'X)}—E{G(»)}]? (4)
the attractor imt* = \MUMR™U---UR™. Finally, the em- N
bedding variables are linearly separated to form proper phag#ith G(-) some sufficiently smooth, even, so-called contrast
variables. This results in a reconstructed dynamic attractoiinction that estimates the probability density function of an

defined by a set of phase variables, based on the observati§ifiependent component anda standardized Gaussian vari-
space. able. Each vectow; is a row of matrixW.

More specifically, each component of thd-dimen- We compared models based on embedded observations
sional observation (multidimensional time serigs Y with similar models when the observations are not embed-
ded. Two case studies were considered, namely, a chaotic

autocatalytic process and the familiar Lorenz system. When

*Email address: jsteyl@ing.sun.ac.za the observations were not embedded, a subset of the ob-
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FIG. 1. Calculation of optimal embedding lag, shown herexfor FIG. 2. Calculation of optimal embedding dimension, shown
component of autocatalytic process. Heuristically, optimal lag is sef'€® for thex component of the autocatalytic process.
at first minimum.

obtained by columnwise concatenation of thé subspaces

served states was used directly to predict another subset #tat resulted from the individual embedding of each obser-
the observed states from the same system. In both test casé¥!on component. _ .
it is apparent from inspection of the state equations of the Hyvarinen’s algorithm[7] with a contrast function of the
procesgEqs.(5) and(6) below] that theZ state is dependent form G(s)=(1/a)In cosh@s), with a some trivial constant,
on all three state variableX,Y,2, so that successful model- Was used to project the embedding space to a proper state
ing of Z from X and Y would constitute a proper test of the Space. For this purpose, we used therLAB compatible
proposed embedding strategy. softwareFASTICA [9]. The optimal contrast function was se-

The autocatalytic process previously considered by Lyncﬁected after qualitatively investigating the distribution of the
[8] can be expressed as a state space system by the followi@§servation components by plotting histograms of the com-

set of differential equations: ponents superimposed on a Gaussian distributieg. 3.
Guidelines for the selection of a contrast function according
dax to the distribution of the data are available in thesTICA
rTi 1-X—axZz?, software help files, as well as [i7].
A multiple-layer perceptron neural network with a single
dy hidden layer consisting of 32 hyperbolic tangent nodes and a
rTin 1-Y—-DbYZ, single-node linear output layer was fitted to the state space to

predict Z from the selected observations. For this purpose,
we used thematTLAB Neural Network Toolbox V2.0. The
dz network was trained with the Levenberg-Marquardt algo-
— _— 2 . . . .

dt 1-(1+c)Z+daxXZ+ebYZ, ) rithm on the first 7000 observations, tested on observations

7001 to 8000, and validated against observations 8001 to
whereX, Y, andZ are dimensionless concentrations and,

¢, d, ande, dimensionless input concentrations. The process*®
is chaotic with a well-defined attractor for specific ranges of 2
two process control parametesand e. For the settings
=18000,b=400,c=80,d=1.5,e=4.2, and initial condi- 0
tions[0,0,0]", the authors solved the set of equations using a 3[)%'0
fifth order Runge-Kutta numerical method over 100 simu-
lated seconds. This gave approximately 10 000 points whichmo “ T
were resampled with a constant sampling period of 0.01 s. e ‘i ‘Hﬂm
The evolution of the three stat¥sY,Zwas observed over the 8z —5% 0. . 32 034 036 038 0 42 044
whole period of the simulation to form a three-dimensional
set of observation&ime serieg of the system. ool

The first step of the proposed multidimensional embed-
ding strategy was to embed the individual observation com- AT
ponents. For each observation component, thétag from ooz ' 008
AMI calculations(Fig. 1), and the embedding dimensiom FIG. 3. Choosing the contrast function: Histograms of autocata-
=3 (Fig. 2 from FNN calculationg9-embedding space was lytic components superimposed on Gaussian distribution.
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FIG. 4. AutocatalyticZ state predicted from a multichannel em-
bedding ofX andY states(xX markep, as well as predicted directly be
from X andY states(O marke) with neural network. Observed
state is represented by the line.

FIG. 5. LorenzZ state predicted from a multidimensional em-
dding ofX andY states(X marke), as well as predicted directly
from X andY states(O marke)p with neural network. Observed
state is represented by the line.

900.0' The number of hidden nodes was dgterr_nined b_y COMhe data with an accuracy characterized by a multiple coef-
paring the model error on the test set against increasing ng{

. - cient of determinatiorR?=0.995 when the proposed em-
work size. A minimum sum squared error was reached for 3 edding method was used, as opposed toRanvalue of
hidden nodes. For comparison of embedding strategies, th@ i

neural network model was also fitted directly to the sam 928 when embedding was not used. Likewise, embedding

b i df beddi h diczih €f the Lorenz system enabled one-step ahead prediction with
(S)tastzrva lons as were used for embedding, 1o predicizine multilayer perceptron characterized by Rf value of

. 0.991, as opposed tB?=0.880 when embedding was not
The same approach was followed with the Lorenz systemused. These results are shown in Figs. 4 and 5. Note, for

Wh'.Ch s also a chaot!c SVSte”ﬁ an.d is described by the fOIéxample, in Fig. 5 that in the case of the Lorenz system the
lowing set of differential equations:

prediction ofZ in the region of crossover between the wings

x=a(y—x), of the Lorenz attractor was markedly better using the multi-
dimensional embedding method. This indicates that the pro-
y=p—y—Xxz posed embedding technique can be particularly useful for
inferring system states where operational measurement of
7=—Bz+Xy. (6) these states is not feasible.

In conclusion we shall discuss the general applicability of

These equations were solved for the standard values of our proposed system parametrization method, based on the
=10, p=28, andB=% by using fifth order Runge-Kutta embedding of multidimensional observations. The proposed
numerical integration over 50 simulated seconds. All threemethod clearly works well with systems defined by ordinary
states were resampled at a constant 0.05 s sampling periodifferential equations, for which we can generate noiseless

As in the previous case, the first step was to embed theata. A valid question concerns the generalization of the pa-
observedX andY states. For each observed state, thekag rametrization method to cases involving noisy observations.
=3 was found from AMI calculations, while the embedding A particular difficulty can be expected with the calculation of
dimensionrm= 3 was found from FNN calculations, resulting the embedding lag by the average mutual information statis-
in anR® state space. The same multilayer perceptron neuraic, which is susceptible to noise.
network described above was fitted to the state space to pre- In this case the problem can be surmounted by embedding
dict the observedZ state. For comparison of embedding each observation component individually, with a default lag
strategies, the same model was fitted directly to the sdme of k=1 in a phase space of arbitrary large dimension. After
andY observations used for embedding to predictdistate.  concatenation of the subspaces, the combined phase space is
Optimal projection of the initial embedding was basedreduced by projection onto the significant eigenvectors of the
on the use of a Gaussian contrast function of the fornphase space covariance mafr0]. Selection of the number
G(s)=—(1la)exp(—asi2). of eigenvectors onto which to project is based on the vari-

The model based on embedding gave significantly betteance collectively captured by the set of eigenvectatdeast
prediction of theZ state than the model fitted directly to the 95% is recommendedThereafter, optimal linear separation
X andY observations. For one-step ahead prediction of thés obtained, as in this article, by applying Hyiren’s
autocatalytic system, the multilayer perceptron could predictnethod to the reduced phase space.
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